

WARNING!

This document is distributed for educational purposes ONLY. The components specified in this schematic utilize POTENTIALLY FATAL HIGH VOLTAGES. Maintenance and repair of all equipment utilizing hazardous voltages must be referred to a properly trained and qualified technician. PedalMonkey.com expressly disclaim all liability for injury or property damage resulting from the misuse of any information contained in this document.

This document and the illustrations contained herein are the property of Pedalamonkey. Permission is not granted to make printed copies of this document or any portion theroof for the purpose of distribution. FFrther
electronic distribution of this document from any domain other than www.pedalmonkey.com without the expressed permission of PedaliMonkey is prohibited. The name Marshall is the property of Marshall Amplification.
© 2001 PedalMonkey
PEDALMOMkey.con

Part List

Resistor	Value	Min. Watt Rating	Remarks
R1,7,11,18,19	100 K	$1 / 2$	
R2	820 ohm	$1 / 2$	
R3, 4,8,26	1 Meg	$1 / 2$	
R5	$1.5 \mathrm{~K} / 2 \mathrm{~K}$	2	(See Schematic Note 2)
R6	8.2 K	2	
R9,15,16,23,24,29	470 K	$1 / 2$	
R10	2.2 Meg	$1 / 2$	
R12	220 K	$1 / 2$	
R13,14	820 ohm	$1 / 2$	
R17	56 K	$1 / 2$	
R20	125 ohm	5	
R21,22	8.2 K	$1 / 2$	
R25	100 ohm	3	
R27,28	68 K	$1 / 2$	
R30	500 K Audio Pot	$1 / 2$	Normal Channel Tone Control (See Schematic Note 1)
R31	500 K Audio Pot	$1 / 2$	Normal Channel Volume Control (See Schematic Note 1)
R32	1 K Linear Pot	$1 / 2$	Vibrato Channel Intensity Control
R33	2 Meg Audio Pot	$1 / 2$	Vibrato Channel Speed Control
R34	500 K Audio Pot	$1 / 2$	Vibrato Channel Tone Control (See Schematic Note 1)
R35	500 K Audio Pot	$1 / 2$	Vibrato Channel Volume Control (See Schematic Note 1)

Capacitor	Value	Min. Rating DC Voltage	Remarks
C1 ${ }^{*}$	$0.022 \mu \mathrm{~F}$	400 V	Polypropylene
C2	$16-32 \mu \mathrm{~F}$	450 V	Electrolytic, (See Schematic Note 2)
C3	$50-500 \mu \mathrm{~F}$	50 V	Electrolytic, (See Schematic Note 2)
C5	$0.005 \mu \mathrm{~F}$	400 V	Polypropylene
C6	$0.01 \mu \mathrm{~F}$	400 V	Polypropylene
C7 ${ }^{*}$	$0.05 \mu \mathrm{~F}$	400 V	Polypropylene
C8	$0.01 \mu \mathrm{~F}$	400 V	Ceramic Disk
C9	$0.01 \mu \mathrm{~F}$	400 V	Ceramic Disk
C10	$0.01 \mu \mathrm{~F}$	400 V	Ceramic Disk
C11	$50 \mu \mathrm{~F}$	25 V	Electrolytic
C12	$0.005 \mu \mathrm{~F}$	400 V	Polypropylene
C13	$0.005 \mu \mathrm{~F}$	400 V	Polypropylene
C14	470 p	400 V	Ceramic Disk or Mica
C15	$0.005 \mu \mathrm{~F}$	400 V	Polypropylene
C16*	$0.01 \mu \mathrm{~F}$	400 V	Polypropylene
C17	$0.01 \mu \mathrm{~F}$	400 V	Polypropylene
C18	$0.01 \mu \mathrm{~F}$	400 V	Polypropylene
C19	$50 \mu \mathrm{~F}$	25 V	Electrolytic
C20-A	$32 \mu \mathrm{~F}$	350 V	$1 / 2$ Multican Electrolytic Cap
C20-B **	$16 \mu \mathrm{~F}$	350 V	$1 / 2$ Multican Electrolytic Cap

* Capacitors which most affect "tone". While there is no consensus as to best type, Sprague, Mallory, Cornell Dublier, Jensen Paper-in Oil, etc., and on and on, extra money spent for parts in these key positions will generally yield "better sound".
** Standard electrolytic capacitors of equal value may be substituted for the Multican Cap.

Other Parts

V1,2,3	ECC83/12AX7 Twin Triode Valve
V4,5	EL84/6BQ5 Pentode Valve
V6	EZ81/6CA4 Voltage Rectifier Valve
T1	Power Transformer
T2	Output Transformer
J1,2,3,4	1/4 in Input Jack, Switched, NC (Normally Closed)
F1	1 Amp Slo-Blo Fuse
F2	1/4 Amp Optional B+ Voltage Fuse (Not shown in schematic) Insert between Standby switch (SW2) and capacitor C20-A.
SW1	Power Switch, SPST
SW2	Standby Switch, SPST
SW3	Vibrato Foot Switch, SPST
SW4	Speaker Impedance Selector Switch, SP3T
SW5	Voltage Selector Switch, SP3T
I1	6.3V Power Indicator Lamp

Revision History

Revision 0 (Original)

Revision 1

1. Corrected Trem Channel resistor (R8) connection error.
2. Corrected Trem Channel V3 missing connection between Pin 3 and 8.

Revision 2

1. Inserted speaker symbol between Impedance Selector Switch and Output Transformer Gnd Tap.
2. Modified Normal Channel input topology per Mark Durham's request.

Note: Original Marshall 18s didn't come equipped with an Impedance Selector Switch. I added the switch because it seemed most group members were installing this switch in their clones.

Revision 3

1. R25-Changed from $1 / 2$ watt to 3 watt
2. R10-Changed from 2 meg to 2.7 meg
3. R26-Changed from 1 meg to 1.5 meg
4. SW1 - Changed location of switch in relationship to fuse.
5. Modified Filament Connections illustration to provide increased clarity for those members less familiar with filament AC voltage wiring techniques.

Revision 4

1. R10 - Reverted back to 2.2 meg
2. R26-Reverted back to 1.5 meg

PLEASE READ

The part list accompanying this schematic DOES NOT, I repeat DOES NOT match the part list 18 watt.xls found at Graydon's site http://elektro.cmhnet.org/~graydon/18wattmain.html. This schematic began as a redraw of Mark Durham's original schematic located in the Group Files Section. When I created the Part List I tried as CLOSELY AS POSSIBLE to match my component numbering to that of Graydon's already existing Part List. The parts in this schematic and his list are different. A complete match was not possible. For instance, my C1 is 0.022 uf while Graydon's C 1 is a 1 uF electrolytic. There is not a 0.022 uF even on his list so I had to number it differently. What does this all mean? Absolutely nothing. I'm sure Graydon is happy with his amp as it is with some cap value other than 0.022 uF . That's the magic of point-to-point wiring. Its makes modification for individual personal tastes simply simple. Is there ONE SINGLE verified accurate schematic of the Marshall 18 in existence? Of course not. Stuff happens in the front office and on the factory floor from day to day, week to week, month to month, and on and on. This certainly explains variations between those real 18 W examples examined by other members of the group. The moral of this rant, if you're going to look at this schematic and then order parts from Graydon's Part List, at some point you're going to end up scratching your head and muttering "duh". Solution: Read. Plan. Read some more. Plan, plan. Then spend you're money.

Preston
"Monkeyman"

